Nuclear Reactions:

Nuclear Reactions vs. Ordinary Chemical Reactions: crash course video

Chemical Reactions:

- Rxns that involve the outer electrons
- Elements do not change from one to another.

 $\mathsf{Ex}.\ \mathsf{2H}_2 + \mathsf{O}_2 \ \textbf{\rightarrow} \ \mathsf{2H}_2\mathsf{O}$

Nuclear Reactions:

- Rxns that involve the nucleus
- Nucleus changes- products can be different elements than the reactants.
 Ex. ²³⁸/₉₂U → ²³⁴/₉₀Th + ⁴/₂He

Radioactivity:

- Process by which nuclei emit particles and rays (radiation) Radiation:
 - Penetrating rays and particles emitted by a radioactive source
 - 1. Alpha (a) stopped by paper, skin, clothing
 - 2. Beta (β)- stopped by metal foil, wood
 - 3. Gamma (γ)- stopped by lead, thick concrete

Radioisotope:

- An isotope that has an unstable nucleus
- Undergoes radioactive decay -spontaneous decay of the nucleus into a more stable nucleus, emits particles +/or radiation

Types of Radioactive Decay (Transmutation):

• Sum Reactant's Atomic # and mass # = Sum Product's atomic # and mass #

Ex.
$${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$$

• IF Atomic # changes = identity of element changes

• Emission/Decay= release particle/radiation. Product side of rxn

- Capture= takes in particle/radiation. Reactant side of rxn
 - Alpha (a) ${}_{2}^{4}\text{He}$ Ex. ${}_{92}^{238}\text{U} \rightarrow {}_{90}^{234}\text{Th} + {}_{2}^{4}\text{He}$
 - Beta/Electron (β) $_{-1}^{0}$ e Ex. $_{6}^{14}$ C → $_{7}^{14}$ N + $_{-1}^{0}$ e
 - **Gamma (γ)** *No particles are emitted just high energy Ex. $^{230}_{90}$ Th → $^{230}_{90}$ Th + $^{0}_{0}$ γ
 - **Positron (β)** ${}^{0}_{+1}e$ Ex. ${}^{38}_{19}K \rightarrow {}^{38}_{18}Ar + {}^{0}_{+1}e$
 - Neutron ${}^{1}_{0}n$ Ex. ${}^{238}_{92}U + {}^{1}_{0}n \rightarrow {}^{239}_{92}U$
 - Proton ${}^{1}_{1}H$ Ex. ${}^{18}_{9}F \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$

Artificial Transmutation:

- Particles bombard the nucleus of an atom
- Particle accelerator (Atom Smasher), Nuclear reactors, Nuclear bombs
- Elements above 92 = man-made

ex.

 ${}^{14}_{7}\text{N} + {}^{4}_{2}\text{He} \rightarrow {}^{17}_{8}\text{O} + {}^{1}_{1}\text{H}$

 $^{238}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{239}_{92}$ U $\rightarrow ^{239}_{93}$ Np + $^{0}_{-1}$ e

Higgs-boson (crazy girl) Higgs-boson Explanation cartoon* More Higgs-boson explanation* http://ed.ted.com/lessons/brian-cox-on-cern-s-supercollider**

Comparing Fission & Fusion:

Fission:

- Heavy nuclei are split into lighter nuclei.
- Relatively easy to control but produce radioactive wastes.
- Plutonium and uranium

Fission

<u>Three mile Island</u> <u>Chernobyl II</u> <u>Fukushima I</u> <u>Fukushima TIME explanation</u> <u>Chernobyl postcard pics</u> Nuclear bomb b

Fusion:

- Light nuclei are combined to form heavier nuclei.
- Difficult to initiate and control but produce little radioactive wastes.

Half-Life:

• Time it takes for $\frac{1}{2}$ of the atoms of a radioactive isotope to decay

Decay rate of radioactivity: After ten half lives, the level of radiation is reduced to one thousandth

- More stable isotopes decay slowly \rightarrow longer $\frac{1}{2}$ life
- Less stable isotopes- decay quickly \rightarrow shorter $\frac{1}{2}$ life

							<mark></mark> .	· ·
	One half life two	three	four	five	six	seven	eight	nine
	TABLE 22.2 Half-lives of Some Useful Radioisotopes							
	Radioisotope	Symbol	Radiatio	on H	alf-life		Use	2
	Tritium	3 ₁ H	β-	12	2.33 years		Biochem	ical tracer
	Carbon-14	¹⁴ 6C	β-	5	730 years		Archaeo	logical dating
	Phosphorus-32	³² 15P	βĒ	14	4.26 days		Leukemi	a therapy
	Potassium-40	⁴⁰ 19K	β-	1	28×10^9	years	Geologic	al dating
	Cobalt-60	60 27Co	β-,,	y 5.	.27 years		Cancer	therapy
	Technetium-99m*	99m 43T⊂	γ	6	01 hours		Brain sca	uns
	Iodine-123	123 53	γ	1	3.27 hours	•	Thyroid	therapy
	Uranium-235	235U		7	0.1×10^8	voars	Nuclear	rotors

QUESTION 1

O

Calculating Half-Life:

Ex. 1 Radioactive element has a $\frac{1}{2}$ life of 30 days of an 8 gram sample, how much will be unchanged after 90 days?

‡life	Time	Unchanged (Parent)	Changed (daughter)
0	0	8 grams	(Ograms)
1 ^{s†}	30 days	4 grams	(4 grams)
2 nd	60 days	2 grams	(6 grams)
3 rd	90 days	1 gram	(7 grams)

Ex. 2 The following is known about a fossil bone:

- a.) Amount of carbon-14 originally in bone = 800g
- b.) Amount of carbon-14 presently in bone = 100g
- c.) Amount of nitrogen-14 presently in bone = 700g
- d.) half-life = 5,730 yrs

How old is the fossil bone? 17,190 yrs

1/2 life	Time	<u>P (C-14)</u>	<u>D (N-14)</u>	
0	0 yrs	800g	Og	
1 ^{s†}	5,730 yrs	400g	400g	
2 nd	11,460 yrs	200g	600g	
3 rd	17,190 yrs	100 g	700g	

Ex.3 The ¹/₂ life of radium-224 is 3.66 days. What was the original mass of radium-224 if 0.0500 grams remain after 7.32 days? Amount remaining= (initial amount)(.5)ⁿ

S00....