Early Models of the Atom:

Democritus: (~335 BC Greek Era)

• Atoms were indivisible and indestructible

Dalton's Atomic Theory (1808):

• Atom= simple sphere, no internal structure

JJ Thomson (1904):

• Plum Pudding Model

Rutherford (1911):

- Discovered the nucleus central core of atom (Gold-Foil experiment)
- Planetary model- protons in a nucleus; electrons distributed around the nucleus

Structure of the Nuclear Atom:

Atom:

- Smallest particle of an element
- Made up sub-atomic particles:

Protons: + charge (Goldstein 1886, Rutherford 1917)

Electrons: - charge (J.J. Thomson 1897, R.Millikan 1916) Neutrons: no charge (Chadwick 1932)

• No net electric charge

Properties of Sub-atomic particles									
Particle	Symbol	Relative	Relative mass	Actual mass (g)					
		Charge	(mass of proton = 1)						
Electron	e⁻	-1	1/1840	9.109381 x 10 ⁻²⁸ g					
Proton	P⁺	+1	1	1.67 x 10 ⁻²⁴ g					
Neutron	n ^o	0	1	1.67 x 10 ⁻²⁴ g					

4.3 Distinguishing Among Atoms:

Atomic number:

- # of protons (and electrons)
- IDs the element

Mass number (atomic mass):

• # of protons (or atomic #) + neutrons

*Number of neutrons = mass # - # of protons (or atomic #)

Representing Atomic # and Mass # shorthand:

- mass # = superscript (A)
- atomic # = subscript (Z)

•
$${}^{A}_{Z}X$$

ex. ¹⁹⁷₇₉ Au, ¹⁹⁷Au or Gold-197, Au-197

Isotopes:

- Atoms w/same # of protons (and electrons) different # of neutrons
- Led to the discovery of neutrons

ex. <u>3 Hydrogens isotopes</u>:

Hydrogen-1 $\binom{1}{1}$ H) - 1 proton, no neutrons (mass # =1)

- Hydrogen-2 $\binom{2}{1}H$ 1 proton, 1 neutron (mass #= 2)
- Hydrogen-3 $\binom{3}{1}$ H) 1 proton, 2 neutrons (mass# = 3)

Element	Symbol	# of	# of	# of	Atomic #	Mass #	Shorthand		
		protons	electrons	neurrons	π	π			
Manganese		25		30					
Sodium			11	12					
Bromine		35		45					
Yttrium					39	89			
Arsenic			33			75			
Actinium						227			

Fill in Rest of chart

Average Atomic Mass:

- A weighted average of the masses of the isotopes of an element (reflects both the mass and the relative abundance in nature)
- Atomic mass unit = (amu)

Calculating average atomic mass:

• Mass of each isotope x relative abundance (expressed as a decimal) then add the products.

Ex. 2 most abundant isotopes of carbon are **carbon 12** (mass= 12.000000amu) and **carbon-13** (mass = 13.003355 amu). Their percent abundances are 98.93% and 1.07%. Calculate the atomic mass of carbon.

12.000000 x .9893 = 11.872 13.003355 x .0107 = +<u>.139</u> Average Atomic Mass = 12.011 amu